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ABSTRACT: The nonmetric ‘‘trait list’’ methodology is widely used for estimating ancestry of skeletal remains. However, the effects of the
method’s embedded subjectivity on subsequent accuracy and consistency are largely unknown. We develop a mathematical simulation to test whether
variation in the application of the ‘‘trait list’’ method alters the ancestry estimation for a given case. Our simulation explores how variations in (i) trait
selection, (ii) number of traits employed, and (iii) ancestry choice thresholds affect the ancestry estimation of an unidentified skeleton. Using two
temporally and geographically diverse samples, the simulation demonstrates that trait selection, trait quantity, threshold choices, and the exclusion of
high-frequency traits had minimal effect on estimation of general ancestry. For all data sets and Runs, AccuracyAS was maintained above 90%. The
authors close with a discussion on the logistical issues present when choosing traits, and how to avoid ancestry bias.
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The 2009 National Academy of Sciences report (Strengthening
Forensic Science in the United States: A Path Forward) calls for a
reassessment of the principles and assumptions upon which the var-
ious forensic disciplines are based. In this paper, we answer that
call in the area of nonmetric ancestry assessment in forensic anthro-
pology. The nonmetric trait list methodology, in addition to metric
analyses, is widely used for assessing ancestry of skeletal remains
(1–4). We first discuss how nonmetric traits are applied to estimate
ancestry and the current limitations with this application. Next, we
develop a mathematical simulation to test whether variation in the
application of the trait list method alters the ancestry description
for a given case. We discuss how to (i) move toward standardiza-
tion of the trait list method, (ii) work with the method’s embedded
nuances and biases, and (iii) apply the trait list method responsibly.

Forensic anthropologists employ two types of nonmetric traits for
qualitative ancestry estimation, which we define as ‘‘binary’’ and
‘‘morphoscopic.’’ Binary nonmetric traits, such as sutural ossicals or
postbregmatic depressions, are expressed as one of two states:
‘‘present’’ or ‘‘absent.’’ Morphoscopic nonmetric traits have multiple
states, described by the degree of expression, or the shape of the
trait. Examples of morphoscopic trait expression include the degree
of shoveling on shovel-shaped incisors (4–7) or the shape of the eye
orbit as round, rectangular, or sloped (8–10). When forensic anthro-
pologists analyze skeletal material, the presence (and ⁄ or degrees of
presence) of a nonmetric trait is associated with a particular ances-
try, while the absence of a trait generally carries no estimative
weight. Similarly, morphoscopic trait shapes are associated with a
particular ancestry. In the example cited above on orbit shape,
round, rectangular, and sloped shapes are more frequent in individu-
als of Asian, African, and European ancestries, respectively (8,10).
For morphoscopic traits with only two states, such as a round or
oval external auditory meatus, two ancestries are associated with
one state while the other ancestry is associated with the alternate
state (10).

When assessing ancestry from nonmetric traits, forensic anthro-
pologists employ what the authors call the ‘‘trait list method.’’ A
checklist of traits is completed, noting each trait’s state expression.
Next, the forensic anthropologist studies the distribution of the trait
states among the three ancestries (Asian, African, and European).
Trait states are not exclusive to a single ancestry; instead, the trait
list method is grounded in the belief that individuals of a specific
ancestry more often express a particular trait state than other ances-
tries. Because nonmetric traits are considered heritable, albeit to
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various degrees (11–18), genetic drift and gene flow must be con-
sidered when accounting for shifts in distributions of trait state
expressions. The distribution of nonmetric traits is complex, and
the relationship of genotype to phenotype is not fully understood.
The polygenic nature of these traits maintains a complex path for
variation in expression (19,20). When using the trait list method,
the premise of trait state distribution and the influential genetic
nuances can often be lost in the application. For example, a foren-
sic anthropologist employs 20 traits to estimate ancestry of a given
case; half of these trait states are consistent with Asian ancestry,
and half are consistent with European ancestry. The forensic
anthropologist may designate the ancestry of this individual as
‘‘admixed European and Asian.’’ This designation implicitly relies
on the concept that trait states are unique to a given ancestry. Com-
binations of trait state ancestries are interpreted to mean that an
individual is of ‘‘mixed’’ ancestry, ignoring the possibility that this
individual represents a nonconforming phenotype. An individual
with these 20 trait states could have ancestral ties to any global
location. All gene pools have the genetic potential to create individ-
uals with any combination of trait states, with the exception of
extreme cases of isolated island or indigenous populations (21).
Samples studied to demonstrate trait frequency differences among
ancestries cannot rely on pristine populations because pure
‘‘Asian,’’ ‘‘African,’’ or ‘‘European’’ ancestries never existed. As
Weiss and Long (22, pp. 702–707) note:

Even if one were to grant that contemporary data only pro-
vide estimates of, rather than actual, ancestral parental geno-
type frequencies, there is no reason to think that there ever
were isolated, homogeneous parental populations at any point
in our human past. Why do we so uncritically accept admix-
ture-based analyses of global samples that give the appear-
ance that human variation is clustered into a few major
populations, portrayed in much the same way as classical
races?

Once one understands the genetic and environmental factors influ-
encing trait expression and distribution in a population, it seems unli-
kely that forensic anthropologists could successfully designate
ancestry using nonmetric traits. The relative accuracy of the trait list
method is unknown because there is no requirement or community
space for forensic anthropologists to document the comparison of
racial identities of adjudicated cases to the ancestry estimations gen-
erated by nonmetric methods. As a result of this deficiency, studies
have attempted to refine the method by testing the reliability of parti-
cular traits in estimating ancestry. Hefner et al. (1) empirically dem-
onstrated that frequencies of particular nonmetric traits are
inconsistent with those listed in the foundational forensic literature as
being associated with specific ancestries. Some of these core nonmet-
ric studies used small samples (n = 10) with minimal sex diversity to
establish associations between trait states and ancestries (10). This
lack of adequate sampling cannot support an empirical discussion on
the universal variation of trait expression. In addition to such incon-
sistencies, there is no standardization within forensic anthropology in
applying the trait list method. Variations in which traits are used, the
number of traits used, and the cut-off choices between one ancestry
assessment and another must be studied.

Recent work attempts to avoid trait list methodology altogether
(1,2,23,24). Instead, objective statistical methods such as discrimi-
nant analysis and neural networking are applied to nonmetric data.
These methods negate the association of trait states to ancestries
and provide a level of statistical significance through which to
assess the result’s accuracy (2,24). However, many of the newly

proposed statistical methods are still based on subjective assessment
of morphoscopic trait states at the initial data collection stage. The
ambiguity of assigning qualitative descriptions to morphoscopic
traits may be a serious source for subjectivity and nonstandardiza-
tion, in that ‘‘where in the context of any particular systematic
comparison does ‘round’ stop and ‘oval’ begin?’’ (25, p. 1). It is the
opinion of the authors that the complexity and embedded subjectiv-
ity of choosing one trait state over another cannot be entirely elimi-
nated by the creation of detailed descriptions and intense peer
training. Statistically based methods are a necessary direction for
nonmetric trait methodology in forensic anthropology, and the
recent work cited above is progressing nonmetric analysis toward
this goal. As a discipline, forensic anthropology must challenge
itself to explore the subjectivity of these and future methodologies.

Mathematical Simulation of Trait List Analysis

Ancestry assessment from skeletal remains involves a series of
decisions. There is no protocol for how to interpret a suite of traits
into an ancestry estimation (2). For example, if 10 of 10 observed
traits express the Asian state, the associated skeleton would typi-
cally be classified as having Asian ancestry. But what if only nine
or eight or seven of 10 are associated with Asian ancestry? What
is the threshold for considering the conventional admixture estima-
tions (regardless of their validity) when using the ‘‘trait list’’
methodology?

In this paper, we use a mathematical simulation (developed by
author TLH) that realistically represents the possible analytical vari-
ations of trait list ancestry estimation. Our simulation explores how
(i) trait selection, (ii) number of traits employed, and (iii) ancestry
choice thresholds affect the ancestry estimation of a skeleton. The
simulation refines the widely used trait list method for ancestry
estimation, which is known to suffer from empirical weakness and
lack of standardization. The relative accuracy of the trait list
method in actual casework has not been comprehensively exam-
ined. While valid critiques have been made (26–29), the method
has endured because of its ease of application and the familiarity
of certain traits to the anthropologist. Here, we are able to simulate
the decision-making process of the anthropologist, taking into
account possible variations. We assess how that variation in the
application of the trait list method influences the method’s outcome,
that is the ancestry estimation.

Our simulation does not test how well an individual’s or sam-
ple’s nonmetric trait proportions conform to the paradigms of the
trait list method. Instead, we want to know how variations in the
decision-making process itself influence the ancestry estimation of
any given individual. The broader application of our simulation
examines the trends in ancestry estimations based on different pop-
ulations and samples. In turn, this discussion assesses the use and
limitations of the trait list method, of ancestry categories, and of
specific nonmetric traits.

We begin our presentation of the simulation with the Materials
and Methods section of this paper, in which we explain the ground-
work behind the simulation we have developed. In the following
section, we demonstrate how the simulation assesses the influence
of methodological variation by testing it on 175 individuals from
two different skeletal samples. Finally, we discuss the forensic
implications of this simulation on the use of the trait list method.

Materials and Methods

To simulate the process of ancestry estimation in case analysis,
we must have skeletal remains to analyze. It is important to
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emphasize that any sample could have been used for this, as the
goal of this paper is not to see how the samples conform to the
embedded paradigms of the trait list method but instead how
the embedded subjectivity in the act of applying the trait list
method alters the ancestry estimation outcome for a given skeleton.
Obviously, the consistency of an ancestry estimation is dependent
upon how well or poor a skeleton conforms to the paradigms of
its particular ancestry. In the samples provided, we include individ-
uals typically included under Asian ancestry: Native Americans
and indigenous Guatemalans. However, there is a large range of
diversity within these two samples in regard to the number of traits
conforming to the Asian state. For some individuals, all traits con-
form to the Asian state while in others, only a few traits conform
to the Asian state. Therefore, these two samples allow for an
excellent platform for testing the consistency of the trait list meth-
od’s ancestry estimations; if the consistency is low, this cannot be
attributed to nonconforming skeletal remains as a range of confor-
mity is present in our samples. On the other hand, if the ancestry
estimations remain consistent throughout the simulations, this result
cannot be attributed to a skeletal sample that wholly conforms to
the paradigms for Asian ancestry.

Skeletal Series: Historic and Prehistoric Northern California
Native Americans (n = 107)

Native American samples of adult males (n = 87) and females
(n = 20) are included in this project. Authors CEH and CAJ
collected these data. A group association of ‘‘NCNA’’ (Northern
California Native Americans) was assigned to the samples that rep-
resent diverse temporal and geographic ranges within California’s
prehistory and more recent history. Alameda county samples con-
sist of skeletal remains from sites ALA 309, ALA 307, ALA 328,
ALA 329, and ALA 13. Calibrated radiocarbon assessments esti-
mate varied prehistoric occupation dates for these sites from 3030
BC to AD 1395 (30–33). Contra Costa County samples come from
sites CCO-300 and CCO-138 with uncalibrated radiocarbon assess-
ments ranging from AD 150 to AD 1425 (30,31,33). San Joaquin
county samples derive from site SJO-68 whose uncalibrated radio-
carbon dates are estimated at 4350 BC to 2980 BC.

Skeletal Series: Modern Guatemalan Maya (n = 221)

The modern sample consists of adult male (n = 196) and female
(n = 25) indigenous Guatemalan Maya (GUA). All skeletal remains
used for this sample were victims of the Guatemalan genocide
(1970s–1990s) and are in the custody of the Forensic Anthropology
Foundation of Guatemala (FAFG). The FAFG gave permission for
the collection of all data used in this study, collected by author
CEH. The Guatemalan sample includes individuals from multiple
indigenous Maya communities from the Guatemalan states Quiche,
Chimaltenango, and Baja Verapaz. During the time range of the
sample, the majority of Guatemalan Maya had limited contact with
urban areas, and community endogamy practices were common
(34). Marriage of Maya with Ladino and other non-Mayan individ-
uals, even beyond their communities or linguistic groups is docu-
mented as rare (35,36). Anthropological interviews with Marco
Perez (Director of Cultural Anthropology Branch, FAFG) have con-
cluded that the majority of the cases included in the sample are
indigenous Guatemalans. However, because two of the sites were
military camps, we cannot currently confirm whether other popula-
tions (such as Ladinos from Guatemala City) are represented in this
sample. DNA identification is under way (personal communication
with John Crews, director of FAFG DNA laboratory), which will

elucidate the assumptions about ethnic identity of the skeletal
remains.

For both NCNA and GUA samples, crania with missing data are
included, as it was difficult to find large undamaged samples. Cra-
nia exhibiting morphological deformation were not included in the
samples.

Data Collection and Preparation

A combination of 25 binary and morphoscopic traits were col-
lected for the two samples. The traits, their corresponding expres-
sions, and associated ancestry were derived from Ossenberg (37)
and Rhine (10) and are provided in the Appendix. While this study
uses subjective morphometric traits as a point of analysis, the focus
of this research is not in the subjectivity of the traits, but rather on
other inconsistencies embedded in the trait list method. Only traits
whose different states have been published and directly linked to a
specific ancestry are included. Because of a significant lack of
complete skulls in the NCNA samples, the authors chose not to
collect mandibular data. Several postcranial traits were collected for
both GUA and NCNA samples; however, the present analysis
focuses only on cranial traits. The number of traits collected for
each skull is contingent upon the conditions of the crania. The
greatest number of traits collected from an individual was 19 and
the least was 1.

We used the software JMP 7.0 (SAS Institute Inc., Cary, NC)
and SYSTAT 12.0 (Systat Software, Chicago, IL) for statistical
analyses. Tests for inter- and intra-observer error were conducted
during data collection resulting in no significant differences at
the alpha 0.05 level. Data for both sides were collected. To
determine whether to use individual or side count methods, we
tested for statistical significance of associations between trait
expression and right and left sides using chi-square analysis. No
significant associations were found at the alpha = 0.05 level.
Therefore, we chose the side count method, using the left sides’
expression for all bilateral traits. Chi-square tests for sex effects
were conducted for the NCNA sample, and no significant associ-
ations between sex and trait expression at the alpha = 0.05 level
were present.

Trait Weighting

If we simplify the trait list method, it is merely a tallying sys-
tem of trait states to represent the proportion of each ancestry.
To simulate realistic variations in ancestry assessments as
described above, we must place assumptions on weighting traits.
In this simulation for traits whose states are exclusively associated
to one of the three ancestries, each trait state is weighted equally.
For example, round, rectangular, or slanted orbit shape are each
exclusively associated with individuals of Asian, African, and
European ancestry; all trait states contribute the same amount to
each ancestry. For traits whose states are shared between two
ancestries the trait state’s contribution is equally divided among
both ancestries. For example, Rhine (10) suggests that ‘‘American
Caucasoid’’ and ‘‘American Blacks’’ both share a round external
auditory meatus, while ‘‘Southwestern Mongoloids’’ have an ellip-
tical external auditory meatus. In this example, if a cranium
exhibited a round external auditory meatus, then half the weight
would be assigned to ‘‘American Blacks’’ and the other half
assigned to ‘‘American Whites.’’ In contrast, if the external audi-
tory meatus was elliptical, the entire weight of the state would
go to ‘‘Southwestern Mongoloids.’’ This allows us to put individ-
uals with the same number of present ⁄ known traits on equal
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footing when the specific subsets of traits collected differ for
each individual in our samples.

Selecting a Data Set to Test Variability

The crania included in both the GUA and NCNA samples exhib-
ited varying amounts of the 25 traits on which we could collect
data. To accurately test variability of ancestry assessment, it is
important to use as many traits and as large a sample as possible.
However, a balance is required, as greatly increasing the number of
traits used in a trait list analysis can severely limit the number of
individuals within our sample meeting this requirement. We there-
fore restrict our sample to a reduced data set comprised of individ-
uals with a minimum number of traits, designated as Ntrait. After
reducing the sample to a data set of individuals with at least Ntrait

traits, the ith individual in the sample has a number of traits Ni
trait

that is greater than or equal to Ntrait. For example, if Ntrait = 14,
only individuals from our sample that have data for at least 14
traits will be included in the reduced data set. To simulate variation
in the ancestry estimation process using our data set, we assume
that an observer only has access to or chooses to use a set of traits
numbering less than or equal to Ntrait. We designated Nc as the
number of traits used to conduct the trait list method. Nc is fixed
for the whole sample and is less than or equal to Ntrait. Once Nc is
fixed, the trait list method is performed on the data set using the
following algorithm:

• Begin with individual 1 with Ni
trait traits.

• Take a subset of Nc traits out of the total N1
trait traits and per-

form an ancestry estimation as detailed below.
• Repeat for all possible subsets of Nc traits for individual 1.
• Repeat for every individual in the data set.

As an explicit example, let Ntrait = 14, Nc = 10. If individual 1
has N1

trait = 16 traits, then the total number of subsets from which
ancestry estimations are carried out for individual 1 is C16

10 = 8008,
that is the number of combinations (C) of 10 traits out of a possible
16. This process mimics the selection of a certain subset of traits
(Nc = 10) to apply in the trait list method. In actual casework, the
selection of the subset of traits may be based on an array of cir-
cumstances, such as the analyst’s preference ⁄confidence in particu-
lar traits, or the absence of ⁄ damage to portions of the cranium.
Simulating variation in the choice of traits used out of those possi-
ble for a given cranium helps us assess the effects of this choice
on the derived ancestry estimation. In our analyses below, we also
examine the effects of changing Nc.

Describing Trait Frequencies in terms of Ancestry

Three ancestries typically used in the trait list method are the
basis of this simulation. A variety of descriptive labels are used in
forensic literature (38,39); we chose to use the labels European
(EU), Asian (AS), and African (AF). For each subset of Nc traits
for an individual, the simulation calculates the percentage composi-
tion of EU, AS, and AF trait states. Based on our assumption that
all traits are weighted equally in the application of the trait list
method, the percentages are used to describe the amount of EU,
AS, and AF contribution to an ancestry estimation. Our simulation
describes the contribution of each ancestry to an individual’s total
ancestry estimation using one of the four ‘‘Proportion Descriptors’’
described below (for X = EU, AF, or AS):

• Full Ancestry X: Ancestry X’s percentage is the only ancestry
significantly reflected in the trait list analysis.

• Majority Ancestry X: Ancestry X’s percentage comprises the
major component of the trait list analysis, but not at a high or
low enough percentage to be considered ‘‘Full Ancestry X’’ or
‘‘Minority Ancestry X,’’ respectively.

• Minority Ancestry X: Ancestry X’s percentage comprises the
minor component of the trait list analysis, but not at a high or
low enough percentage to be labeled as ‘‘Majority Ancestry X’’
or ‘‘Not Ancestry X.’’

• Not Ancestry X: Ancestry X’s percentage does not comprise a
large enough component to be significantly regarded.

The final step of the simulation is generating an actual ancestry
estimation by representing the combination of the EU, AF, and AS
Proportion Descriptors into a cohesive ancestry estimation descrip-
tion. We generate 26 possible ancestry estimations listed in
Table 1. These ancestry estimations do not represent a standardized
labeling system used by forensic anthropologists—such standardiza-
tion does not presently exist. The labeling system developed here
was chosen based on the need to provide an ancestry estimation
description that can represent all of the possible scenarios generated
by the interaction of the Proportion Descriptors and the threshold
variations (discussed below).

With the exception of a few, these descriptions are straightfor-
ward. We define the ancestry estimation of ‘‘Equal Ancestry X and
Y’’ to be the case when exactly 50% of the trait states are consis-
tent with X and 50% are consistent with Y. The ancestry estima-
tion ‘‘Primarily X’’ is best explained by the following example.
‘‘Primarly AS’’ occurs when ancestry AS is represented by a per-
centage of traits consistent with the Proportion Descriptor ‘‘Majority
Ancestry AS,’’ but ancestries EU and AF are represented by a per-
centage consistent with the Proportion Descriptor ‘‘Not Ancestry
EU’’ and ‘‘Not Ancestry AF.’’ Because the percentage of AS traits
is not great enough to be described at ‘‘Full AS,’’ we explain such
a circumstance as ‘‘Primarily AS.’’

Studying Trait Quantity and Trait Selection Variation

One of the uses for our simulation is to study how variability of
trait selection and number of traits used in an ancestry analysis
influences the ancestry estimation. For example, a skull has 30 pos-
sible traits for trait list method analysis; forensic anthropologist X
uses 25 traits, forensic anthropologist Y also uses 25 traits, but
some traits differ from those used by anthropologist X, and

TABLE 1—The 26 possible ancestry estimations generated from the model.

Full AS (AS)* EU maj, AF min (EU_af)
Full EU (EU) EU maj, AS min (EU_as)
Full AF (AF) EU maj, AS and AF min (EU_as_af)
Equal AS, EU, AF
(AS_EU_AF)

EU, AF, and AS min (eu_af_as)

Equal AS EU (AS_EU) EU and AS maj, AF min (EU_AS_af)
Equal AS AF (AS_AF) EU and AF maj, AS min (EU_AF_as)
Equal AF EU (AF_EU) AS and AF maj, EU min (AS_AF_eu)
AS maj, EU min (AS_eu) Primarily AS (P_AS)
AS maj, EU and AF min
(AS_eu_af)

Primarily AF (P_AF)

AS maj, AF min (AS_af) Primarily EU (P_EU)
AF maj, AS min (AF_as) Primarily AS and AF (P_AS_AF)
AF maj, EU min (AF_eu) Primarily AS and EU (P_AS_EU)
AF maj, EU and AS min
(AF_eu_as)

Primarily AF and EU (P_AF_EU)

*Parentheses indicate the abbreviations used by the simulation and
throughout this paper.
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anthropologist Z uses 29 traits. Will the ancestry estimations be
similar? The simulation answers such a question by following these
steps:

• Choose the number of traits to use for the analysis Ntrait. This can
be however small or large the simulation’s user chooses and is
often determined by how many traits one was generally able to
collect from the crania for a given sample. Selecting too large a
number of traits can result in a diminished sample size. Here let
us use 14 traits. Crania in the sample that have at least 14 traits
will comprise the Ntrait data set and are used for analyses.

• Next, choose the Nc to be applied to the data set. This is the
actual number of traits that will be used to conduct the trait list
method ancestry estimation. Recall that Nc must be less than or
equal to Ntrait. Here we choose 13.

• To test whether analyzing an equal number of, but different
traits from a single cranium can result in differing ancestry esti-
mations, we generate all possible 13-trait combinations per indi-
vidual in the data set. For example, if Individual A has 15
traits, the program then generates all possible combinations of
13 traits from the 15 available traits, yielding 105 combinations
for Individual A. The program repeats this step for all individu-
als in the Ntrait = 14 data set.

• The program has now generated all possible trait combinations
for every individual in the data set. The simulation then
describes each of these combinations as one of the 26 possible
ancestry estimation descriptions.

• The program displays the individual and sample distributions
for ancestry assessments over the 26 categories. For example, of
the 105 13-trait combinations for Individual A, the ancestry esti-
mations were distributed between two ancestry categories; ‘‘Maj
AS, Min EU’’ occurred 40 times and ‘‘Maj AS, Min AF’’
occurred 65 times.

This process shows that the assessments of anthropologists X and
Y, who use the same number, but different subsets of traits, may yield
different results if the traits they select are associated with EU or AF
ancestry. The simulation allows us to quantify the variation in the
results based on the selection of traits for assessment. The program
can generate ancestry assessments for any number of traits (Ntrait). To
test whether the discrepancy between Anthropologists X and Z would
result in different ancestry estimations, we simply change the number
of traits (Nc) used in the analysis.

Studying Threshold Variations

In a single trait list method analysis, the forensic anthropologist
must make a series of decisions for choosing how to describe the
contribution of AF, AS, and EU ancestries. Variation in this deci-
sion-making process is a potential site for variation in the trait list
method. For example, a forensic anthropologist may believe that, to
describe an individual as ‘‘Full Ancestry X,’’ 90% of their traits
must express states consistent with Ancestry X. In contrast, another
forensic anthropologist may use a lower threshold of 80%. We
illustrate these thresholds schematically in Fig. 1 for Models A and
B, which exhibit two different thresholds. The blue arrows indicate
the thresholds for defining the four Proportion Descriptors: Not,
Minority, Majority, and Full. Both models use the same trait list
method results from a 20-trait analysis. Of the 20 traits used in the
analysis, 85% conformed to the Asian ancestry, 15% conformed to
the European ancestry, and 5% conformed to the African ancestry.
On both models, the black arrows indicate where each ancestry’s
percentage would fall within the set thresholds. Based on these
thresholds, Simulation A interprets the contribution of each ancestry

as follows: Asian majority, European minority, and No African
ancestry, conforming to the ancestry estimation label ‘‘AS maj, EU
min.’’ In contrast, Simulation B interprets the ancestries’ contribu-
tions as Asian Full, No European, and No African ancestry, result-
ing in the ancestry estimation label ‘‘Full AS.’’ As seen in Fig. 1,
when using a fixed set of data (20 traits), but slightly altering the
thresholds defining each Proportion Descriptor can influence the
ancestry estimation generated by the simulation. To explore how
threshold variations can influence ancestry estimations, our mathe-
matical simulation provides flexibility for adjusting thresholds.
However, a series of rules pertaining to the selection of thresholds
are required for the simulation to ensure that only realistic and con-
sistent ancestry estimations are provided.

In Fig. 1, each Proportion Descriptor (Full, Majority, etc.) has its
own thresholds. Clearly, there is a lower limit at 0% and an upper
limit at 100%. The boundary between Majority Ancestry X and
Minority Ancestry X is fixed at 50%. In Fig. 1, Simulation A’s
threshold for Full Ancestry X is 90%, and the threshold for Not
Ancestry X is 10%. Because 0, 50, and 100% are fixed boundaries,
the only thresholds fluctuating are the upper threshold separating
Majority and Full, and the lower threshold separating Minority and
Not. Therefore, when describing the chosen thresholds, only these
two need to be noted. We use the abbreviation 90 ⁄10 to represent
when the upper threshold is set to 90%, and the lower threshold is
set to 10%. This kind of abbreviation will be used throughout the
rest of the article. To be explicit, for 90 ⁄ 10, we have:

• Full Ancestry X = 90–100% of traits express state consistent
with Ancestry X.

• Majority Ancestry X = 50–89.9% of traits express state consis-
tent with Ancestry X.

• Minority Ancestry X = 10.01–49.9% of traits express state con-
sistent with Ancestry X.

• Not Ancestry X = 0–10% of traits express state consistent with
Ancestry X.

The following restrictions pertain to the adjustment of
thresholds:

• There is a fixed boundary at 50% trait composition separating
‘‘Majority’’ and ‘‘Minority’’ Proportion Descriptors. In other
words, for an individual to have a ‘‘Minority Ancestry X,’’ no
more than 49.9% of the traits express states consistent with
Ancestry X. Conversely, for an individual to have a ‘‘Majority

FIG. 1—Models A and B demonstrate how differences in threshold cutoffs
influence final ancestry estimation.
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Ancestry X,’’ no less than 50% of the traits can express states
consistent with Ancestry X.

• The upper threshold may be set to any percentage between 75%
and 100%.

• The lower threshold may be set to any percentage between 25%
and 0%.

• Full Ancestry is an exclusive ancestry estimation, so the upper
and lower thresholds must sum together to be >100%. Without
such a restriction, an individual could be labeled as ‘‘Full X
with Y minority.’’ This ancestry description violates our defini-
tion of Full Ancestry X, which does not allow for the inclusion
of other ancestries.

The thresholds can be adjusted by any numerical increment within
the parameters outlined above. We ran our samples through the simu-
lation to generate ancestry assessments using varying thresholds per
Run. This allowed us to study how ancestry assessments are affected
by this variation. However, not all incremental changes in thresholds
will change an ancestry assessment, as this is dictated by the number
of traits used in the analysis. For example, in the case where nine of 10
traits states are consistent with Ancestry X and one of these is shared,
the total resulting weight is 8.5. In other words, 8.5 of 10 (85%) trait
states are consistent with Ancestry X. If the threshold for ‘‘Full Ances-
try X’’ is 84% (84 ⁄16), then this collection of traits results in the ances-
try assessment of ‘‘Full Ancestry X’’ because 85% is included above
the threshold of 84%. The next possible number of traits consistent
with Ancestry X can only be a 0.5 increment, such as eight; when eight
of 10 trait states are consistent with Ancestry X, this results in 80%.
Because there are no possible outcomes for trait weighting between
eight and 8.5, any threshold placed between 80% and 85% (such as
82 ⁄18, 84 ⁄16) will yield identical results. Thus, we must be careful to
take the effects of the discrete nature of the data into account before
drawing conclusions.

Results

In this section, we review the simulation’s results on how varia-
tion in thresholds, trait quantity, and specific traits selected for use
affect the ancestry estimation of a skeleton. We will present our
results separately for each of these three factors.

Threshold Variation

To test the effect of threshold variation on ancestry estimations, we
ran several scenarios on subsets of the GUA and NCNA samples. To
isolate any effects of threshold variation, trait number and sample size
were held constant. A sample size of 96 GUA individuals was
derived from the cut-off Ntrait ‡ 14, that is, 96 individuals in the
GUA sample have at least 14 traits (Table 2). Runs ‘‘A’’ test thresh-
old variation while holding sample size and Nc (13 traits) constant.
Runs ‘‘B’’ differ only in that Nc is decreased to and held constant at
12. The NCNA data set included 78 individuals for Ntrait ‡ 11. Runs
‘‘G’’ represent NCNA’s ancestry estimation distributions for when
thresholds vary. For both data sets and all Runs, thresholds were initi-
ated at 76 ⁄24 and were varied by 2% increments for each Run with
the final Run at 90 ⁄10. Some threshold Runs exhibited identical
results, an artifact of the number of traits used in the analysis. In these
instances, only one of the identical Runs is included in the results.
Because the number of Nc trait combinations per individual is depen-
dent on and will vary according to the unique number of traits present
per individual, we use percentages to avoid over- and under-empha-
sizing the distributions of ancestry estimations. From the individual
percentages, we then calculated the average percentage distribution
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for the 26 ancestry estimations for the entire data set (Table 2).
Finally, for each threshold variation per Run, we summed the percen-
tage contribution for the Top 10 and Top 5 most common ancestry
estimations. For Runs A, B, and G, the Top 10 ancestry estimations
held 96–99.9% of all the ancestry estimations generated by the simu-
lation. Furthermore, 84–98% of all ancestry estimations were
included in only five ancestry estimation categories. However, the
most common ancestry estimations did vary slightly throughout the
threshold adjustments; the five gray boxes per row in Table 2 indi-
cate the five most common ancestry estimations for that threshold.
While the large majority of results are focused within a few ancestry
estimations, the distribution within these ancestry categories did vary
with threshold changes (Fig. 2). The distribution can also be viewed
numerically in Table 2 in the column labeled RTop 10-RTop 5. This
column demonstrates that as the threshold ranges increase in size, the
distribution of the ancestry assessments among the possible 26 also
increases.

The distribution of ancestry estimations exhibited in Table 2
implies that threshold choice can alter the ancestry estimation. How-
ever, recall that the 26 ancestry estimation categories were generated
specifically for our simulation as there is no standardization among
practicing forensic anthropologists for how to describe an ancestry
(or ancestries) on a case report. Table 2 shows that several of the
most common ancestry estimation outcomes of Runs A, B, and G
indicate something very similar—most of the Top 5 ancestry estima-
tion labels insinuate a large Asian component. Does an interpretive
difference between ‘‘Primarily AS’’ and ‘‘Full_AS’’ exist in actual
casework? Does an ‘‘AS_eu’’ versus ‘‘AS_af’’ ancestry estimation
influence the decisions of the law enforcement official reading a case
report? Currently, mixed or multiple ancestries is not a searchable
option when using the National Crime Information Center (NCIC) or
the National Missing and Unidentified and Persons System (NamUs).
Consequently, when selecting a single ancestry for searching the
missing person’s database, both AS_eu and AS_af ancestry estima-
tions will most likely yield the same search for a person of Asian
ancestry. While the results in Table 2 support that ancestry estimation
can vary per threshold, it is more important to analyze this variation
situated within the context and nuances of actual casework. Therefore
we develop an alternative approach for conceptualizing ancestry esti-
mation that is pertinent to our specific samples and the questions
raised above. We collapse the 26 ancestry estimations into four clas-
sifications representing generalized categories of inclusion and exclu-
sion. The four classifications are based on the conventional premise
in forensic anthropology that both the GUA and NCNA samples’

biohistories link them to Asian ancestry (8,40,41). Therefore, the pro-
portions of Asian ancestry included in the simulation’s 26 generated
ancestry assessments are the foundation for the four ancestry classifi-
cations (Table 3).

Based on the classification criteria outlined in Table 3, we define a
new variable to describe our simulation’s estimate of consistency
among ancestry outcomes for the trait list method. AccuracyAS is the
sum of the averaged percents of ancestry estimations consistent with
classifications ‘‘Asian’’ or ‘‘Equal Asian.’’ The implication of Accu-
racyAS pertains specifically to our samples and how law enforcement
can interpret ancestry estimations on case reports to ‘‘fit’’ the search-
able missing persons databases. An ancestry estimation that includes
Asian ancestry as the prominent or equally dominant ancestry on a
case report would match the assumed Asian ancestral link in our sam-
ples and most likely lead to an Asian ancestry-based search via
NamUs or NCIC by law enforcement reading the case report. By nat-
ure of its definition, AccuracyAS will eliminate some of the variability
presented in Runs A, B, and G. However, recall that this variation in
ancestry estimation outcomes is an artifact of not only threshold
changes, but also the availability of 26 possible ancestry estimations.
AccuracyAS still considers ancestry estimation variation as a result of
threshold changes, but is contextualized within more realistic applica-
tions of the ancestry estimations made by forensic anthropologists.

Table 4 displays the GUA and NCNA data sets’ average percen-
tage contributions to each of the four classifications in Runs A, B,
and G. When the threshold boundaries change for each Run, the dis-
tribution of the Ancestry assessments among the four classifications
remains highly stable, with associated AccuracyAS values at 96%,
98%, and 92% for Runs A, B, and G, respectively. In contrast, ances-
try estimations that minimize or exclude Asian ancestry do occur, but
at very low rates, around 3.6% for GUA and 7% for NCNA. These
results indicate that for the GUA and NCNA samples, ancestry esti-
mations cluster around those classifications that include Asian ances-
try as a prominent figure, regardless of the threshold. While the
expanded results using the 26 ancestry estimation labels exhibit more
variation as a result of threshold changes, our collapsed results using
the four Asian classifications demonstrate a strong stability and high
AccuracyAS regardless of threshold variation.

Trait Quantity (Nc) Variation

Next, we utilized our simulation to explore how altering the num-
ber of traits used in the analysis (Nc) influences the ancestry estima-
tion. Runs C, D, E, and F employ the same GUA data set of 96
individuals as Runs A and B. Runs C hold sample size and thresholds
constant at 96 and 90 ⁄10, respectively, while decreasing the number
of traits (Nc) used by increments of one (Table 5). Runs D, E, and F
explore patterns of trait quantity variation by holding the thresholds
constant at different levels. Runs H convey a similar pattern of varia-
tion for the NCNA data set using an 86 ⁄ 14 threshold only.

Runs C–F and H result in distribution patterns similar to Runs A
and B; regardless of the number of traits used for analysis, 97–99%
of the ancestry estimations were concentrated in the Top 10 catego-
ries. In contrast, 79–98% of all ancestry estimations were clustered in
the Top 5 per Nc variation. Again, the percentage distribution among
these five categories did vary as Nc changed. However, when collaps-
ing the 26 categories into the four classifications, this variation col-
lapses as well, but is still present (Table 6). For Runs C–F and H,
AccuracyAS decreases as trait quantity decreases. AccuracyAS for the
GUA data set decreases from 97 to 91% for 12 to seven traits, respec-
tively. Ancestry assessments that minimize (minor Asian classifica-
tion) or exclude Asian (no Asian classification) ancestry occur at
average percentages ranging from 3.6 to 9.4% (Table 6). AccuracyASFIG. 2—Average percentage distributions of ancestry assessments for Runs A.
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for the NCNA data set decreased from 93 to 89% for 10 to seven
traits, respectively. These results indicate that for the GUA and
NCNA data sets and corresponding trait quantities tested here, ances-
try assessments cluster around those classifications that include Asian
ancestry as a prominent figure, regardless of the number of traits used
in the trait list method.

Marked differences in the stability of ancestry estimations are
present when comparing the results generated from alterations in (i)
thresholds and (ii) Nc. For both the GUA and NCNA data sets,
AccuracyAS is more stable when altering thresholds versus Nc. This
feature suggests that Nc variation among practicing forensic anthro-
pologists can result in contrasting ancestry estimations more often
than thresholds variation. Overall, the simulation’s results for Accu-
racyAS suggest that variations in applying the trait list method
(thresholds or Nc) yield similar ancestry estimations at least 89% of
the time for the GUA and NCNA data sets.

Trait Selection Variation

For every Run, the simulation generates all possible combinations
of traits for each individual included in the data set. This process is
performed to simulate variability in selecting different traits to use in
a trait list method analysis among practicing forensic anthropologists.
This variation is embedded within all Runs and is therefore taken into
account in the previous discussion of our results. Next, we explore
how including or excluding specific traits in the trait list analysis
influence the ancestry estimations. For example, does excluding
Asian-associated traits that are found in high frequencies in our sam-
ples from the simulation’s Runs influence the ancestry estimations?
From basic trait frequency analyses, we were able to discern that par-
ticular traits were ‘‘big hitters’’ for Asian ancestry in our two samples.
For example, in the GUA sample traits such as shovel-shaped inci-
sors, enamel extensions, buccal pits, canine fossa, and incisal rotation
were found on 84–97% of individuals. How would the ancestry

assessments vary if such influential traits were excluded? We tested
this question by excluding the two ‘‘biggest hitters’’ from the raw data
set: incisal rotation and shovel-shaped incisors. Because of the exclu-
sion of these traits, Ntrait was set to 12. From the GUA Ntrait = 14 data
set (n = 96), 73 individuals had data for at least 12 traits that did not
include data for incisal rotation and shovel-shaped incisors. For Runs
I, the threshold was held constant at 86 ⁄14 while Nc varied. For the
four Ncs in Runs I, AccuracyAS ranged from c. 97 to 91% (Table 7).
This range for AccuracyAS when excluding the two ‘‘big hitters’’
appears highly similar to AccuracyAS of Runs D, which is identical
to Runs I except that it excludes the two ‘‘big hitters.’’ To statistically
discern whether excluding the two traits influenced the ancestry esti-
mations, the percentage distribution over 26 ancestry estimations per
individual was used to compare Runs I and Runs D. Each Run
excluding the traits was paired with its identical Run (set at 86 ⁄ 14,
Nc = 12, 11, 10, or 9) including the traits. We tested for significant
differences in the ‘‘excluding’’ and ‘‘including’’ means for each of the
26 ancestries at each of the four Ncs using Tukey’s HSD test at alpha
= 0.05. For all comparisons, only three differences in means were sta-
tistically significant (Table 8). Next, we tested for significant differ-
ences of AccuracyAS for all Nc pairs of Runs D and I pairs using the
same statistical parameters, and no significant differences were
found. Therefore, we conclude that excluding two high-frequency
traits from our GUA sample does influence the distribution of ances-
try estimations when utilizing the 26 ancestries, but maintains high
and stable estimations of AccuracyAS.

Discussion

Outliers and Their Importance to Forensic Casework

The trends presented in Tables 2–7 demonstrate that ancestry
assessments remain highly stable regardless of traits selection, trait
number, and threshold variations. Additionally, the stable ancestry
estimation distributions are largely consistent with an emphasis on

TABLE 3—Classification labels and descriptions.

Label Number Label Name Label Description

Classification 1 Asian Asian ancestry is prominent over other ancestries in the model’s generated ancestry estimation (e.g., AS_af).
Classification 2 Equal Asian Asian ancestry’s dominance is shared by one or more ancestry in the model’s generated ancestry estimation

(eg., Equal_E_AF_AS).
Classification 3 Minor Asian Asian ancestry is minimized in comparison to other ancestries in the model’s generated ancestry estimation, but still

included (eg., E_as)
Classification 4 No Asian Asian ancestry is not included in the model’s generated ancestry estimation (eg., Primarily_E).

TABLE 4—Analysis of distributions using four classifications.

Run Threshold Ntrait Nc n

Average % Distribution of Nc Combinations

Asian Equal Asian Minor Asian No Asian AccuracyAS

GUA: Threshold Variations

A 76 ⁄ 24 14 13 96 75.67 20.63 3.48 0.21 96.3
A 80 ⁄ 20 14 13 96 75.67 20.68 3.65 0 96.35
A 84 ⁄ 16 14 13 96 75.67 20.68 3.65 0 96.35
A 88 ⁄ 12 14 13 96 75.67 20.68 3.65 0 96.35
A 90 ⁄ 10 14 13 96 75.67 20.68 3.65 0 96.35
B 90 ⁄ 10 14 12 96 63.81 34.1 2.09 0 97.91
B 88 ⁄ 12 14 12 96 63.81 34.1 2.09 0 97.91
B 86 ⁄ 14 14 12 96 63.81 34.1 2.09 0 97.91

NCNA: Threshold Variation

G 90 ⁄ 10 11 9 78 58.94 33.65 7.28 0.13 92.59
G 86 ⁄ 14 11 9 78 58.94 33.14 6.08 1.84 92.08
G 82 ⁄ 16 11 9 78 58.94 33.14 6.08 1.84 92.08
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Asian ancestry. These results focus on the average for the samples,
but what about individual exceptions? Forensic anthropologists
work at the individual case level, and we must also explore this
level in our research. We reviewed the raw data for all individuals
included in the Ntrait = 14 data set (n = 96) to find those who had
resulting ancestry descriptions that demonstrated deviations from
the general trends. A few individuals’ Nc combinations resulted in
ancestry descriptions indicating low or no levels of Asian ancestry
such as ‘‘Full EU’’ or ‘‘EU maj_AS min.’’ We then selected a hand-
ful of these individuals to study (i) how their ancestry assessments
were influenced by trait quantity and threshold variations and (ii)
how coupling metric analysis with the trait list method analysis
would affect the ancestry estimation that ends up on the case report.

At a threshold of 86 ⁄ 14, Case A (GUA male) had 36 of 3432
possible eight-trait combinations that resulted in the exclusion of
Asian ancestry in the final ancestry estimation. When more than
eight traits were used (Nc > 8), the 36 non-Asian ancestry estima-
tions were no longer present. Case A’s cranium underwent cranio-
metric analysis by submitting 20 cranial measurements into
Fordisc 3.0. Fordisc is a computer program that assists in the esti-
mation of the biological profile for unidentified skeletal remains
and is a common tool used in forensic anthropologists’ case anal-
yses (42). The program uses a series of statistical analyses to
determine to which sample population the skeleton in question is
most similar. Fordisc classified Case A as Japanese male with a
posterior probability of 0.839 and a Typicality Rank as 31 ⁄101.
How the forensic anthropologist chooses to couple the metric and
nonmetric assessments to conclude a final ancestry estimation on
the case report is an interpretive and subjective procedure. If met-
ric and trait list method analyses are given equal weight, there is
a good chance that the case report for Case A will include the
possibility of Asian ancestry in the final ancestry estimation.
However, if more weight is place on the nonmetric assessment,
then the final ancestry estimation may deviate from including an
Asian ancestry component.

TABLE 6—Analysis of distributions using four classifications.

Run Threshold Ntrait Nc n

Average % Distribution of Nc Combinations

Asian Equal Asian Minor Asian No Asian AccuracyAS

GUA: Trait Quantity Variation

C 90 ⁄ 10 14 13 96 75.67 20.68 3.65 0 96.35
C 90 ⁄ 10 14 12 96 63.81 34.1 2.09 0 97.91
C 90 ⁄ 10 14 11 96 73.32 22.02 4.66 0.01 95.34
C 90 ⁄ 10 14 10 96 80.07 14.83 5.03 0.06 94.9
C 90 ⁄ 10 14 9 96 70.81 23.75 5.43 0.01 94.56
C 90 ⁄ 10 14 8 96 77.13 14.61 8.22 0.03 91.74
C 90 ⁄ 10 14 7 96 68.16 22.93 8.79 0.12 91.09
D 86 ⁄ 14 14 13 96 75.67 20.68 3.65 0 96.35
D 86 ⁄ 14 14 11 96 73.32 22.02 4.66 0.01 95.34
D 86 ⁄ 14 14 9 96 70.81 23.71 5.24 0.24 94.52
D 86 ⁄ 14 14 7 96 68.16 22.93 8.79 0.12 91.09
E 84 ⁄ 16 14 13 96 75.67 20.68 3.65 0 96.35
E 84 ⁄ 16 14 12 96 63.81 34.1 2.09 0 97.91
E 84 ⁄ 16 14 11 96 73.32 22.02 4.66 0.01 95.34
E 84 ⁄ 16 14 10 96 80.07 14.83 5.03 0.06 94.9
E 84 ⁄ 16 14 9 96 70.81 23.71 5.24 0.24 94.52
E 84 ⁄ 16 14 8 96 77.13 14.55 7.62 0.7 91.68
E 84 ⁄ 16 14 7 96 68.16 22.51 7.54 1.79 90.67
F 76 ⁄ 24 14 13 96 75.67 20.63 3.48 0.21 96.3
F 76 ⁄ 24 14 11 96 73.32 21.96 4.43 0.29 95.28
F 76 ⁄ 24 14 10 96 80.07 14.57 4.41 0.94 94.64
F 76 ⁄ 24 14 9 96 70.81 22.74 4.12 2.34 93.55
F 76 ⁄ 24 14 7 96 68.16 22.51 7.54 1.79 90.67

NCNA: Trait Quantity Variation

H 86 ⁄ 14 11 10 78 69.14 23.87 6.05 0.94 93.01
H 86 ⁄ 14 11 9 78 58.94 33.14 6.08 1.84 92.08
H 86 ⁄ 14 11 8 78 68.36 20.83 7.54 3.27 89.19
H 86 ⁄ 14 11 7 78 57.27 31.71 10.33 0.69 88.98

TABLE 7—Ancestry estimation % distribution with GUA trait exclusion.

GUA Trait Quantity Variation Average % Distribution of Nc Combinations

Run Threshold Ntrait Nc n Asian Equal Asian Minor Asian No Asian AccuracyAS

I 86 ⁄ 14 12 12 73 47.24 49.76 2.99 0.00 97
I 86 ⁄ 14 12 11 73 61.08 30.63 8.29 0.01 91.71
I 86 ⁄ 14 12 10 73 69.39 22.42 8.11 0.08 91.81
I 86 ⁄ 14 12 9 73 60.17 30.73 8.72 0.38 90.9

TABLE 8—Statistically significant differences in the means of ‘‘including’’
and ‘‘excluding’’ traits.

Nc Ancestry Estimation p-Value (Separate Variance) Alpha

11 P_E_AF 0.046 0.05
12 P_AS 0.011 0.05
12 AS_E_AF 0.032 0.05

Thresholds held constant at 86 ⁄ 14 for all Runs.

HUGHES ET AL. • EXPLORING THE EFFECTS OF THE ‘‘TRAIT LIST’’ METHOD’S SUBJECTIVITY 1103



For Case B (GUA male), the Fordisc results provide little help
with errant nonmetric ancestry assessments. The ancestry estima-
tions for 2675 of Case B’s 19,448 seven-trait combinations that
underwent trait method analyses either minimized or excluded
Asian ancestry. Because sex has been established as male, only
male samples are used for the Fordisc analysis. As with Case A,
c. 20 metric traits were input into Fordisc, which considered the
metric data too dissimilar to make a classification. Here, the anthro-
pologist would only have the nonmetric trait analysis on which to
base the case report’s estimation. Having to rely solely upon non-
metric analysis for ancestry assessment is a reality for the forensic
anthropologist; oftentimes, cases may be deformed or fragmented.
If circumstances (trait choice, fragmentation) allowed for one of the
2675 seven-trait combinations to be used for the trait list method
analysis for Case B, then the resulting ancestry assessment that
ended up on the case report would exclude or minimize the compo-
nent of Asian ancestry when in fact Case B is known to have a
large Asian ancestry component.

These examples provide just two scenarios to demonstrate how
the coupling of metric and nonmetric analyses may aid or not aid
in accurately assessing ancestry. Keep in mind that these cases rep-
resent the minority within our sample. Most individuals ancestries’
generated by the simulation estimated a large proportion of Asian
ancestry, consistent with the assumed ancestry for our samples.
Additionally, for both of our samples, the majority of ancestry esti-
mations that excluded or minimized the Asian component were
products of using very few traits, such as seven- and eight-trait
combinations. These nonconforming ancestry assessments com-
pletely disappear when the trait number or threshold is increased at
or above 10-trait combinations or 88 ⁄ 12.

Trait List Method Biases

When only a limited number of traits can be included in a trait list
method analysis, several biases need to be kept in mind. We will dis-
cuss these biases in light of the 25 nonmetric traits recognized in our
study, but the results of this discussion should be applied to the use of
any number of traits. Recall that the trait list method assumes an asso-
ciation between a particular ancestry and the presence of a trait or
trait state. This association creates a contribution potential (CP) for
each ancestry to the final ancestry estimation of an individual. The
CP is dependent on the specific traits used in the analysis. For exam-
ple, the trait ‘‘orbit shape’’ has trait states that are associated with each
of the three ancestries, allowing for a CP for all three ancestries. In
contrast, the trait ‘‘inca bone’’ has only one trait state that carries esti-
mative weight: present. Because the presence of the inca bone is only
associated with Asian ancestry, only this ancestry can glean a CP
from this trait. Of the 25 traits on which we collected data for our
two samples, the CPs for Asian, European, and African ancestries are
as follows. Twenty of the 25 traits have trait states that are specifi-
cally associated with Asian ancestry, yielding a CP of 20. Eleven out
of the 25 traits have trait states that are specific to European ancestry,
and one trait with a trait state associated with both European and
African ancestry, yielding a CP of 12.5 for European ancestry.
Finally, the CP for African ancestry is 8.5. Because the CP varies for
the three ancestries, so too does the possibility for having a ‘‘Full
Ancestry X’’ Proportion Descriptor. For example, if we were able to
collect 25 of 25 traits from a cranium, the absolute maximum number
of traits that can exhibit a European state is 12.5. Let us assume that a
cranium does indeed express all potential European states. Now let
us set Nc = 15. For all possible combinations of 15 of the 25 traits,
the maximum amount that can ever be contributed by European
ancestry is 12.5 of 15 traits, or 83%. Therefore, if the threshold for

the Proportion Descriptor ‘‘Full Ancestry X’’ is set above 83%, the
European component will not be enough to ever be considered ‘‘Full
Ancestry European.’’ In contrast, if Nc = 12 or less, then the CP
exceeds the number of traits used in the combinations and therefore
has the potential to be classified as ‘‘Full Ancestry European.’’

For the 25 traits used in this paper’s analysis, Nc = 8 or less
would allow for the unbiased potential for all ancestries to be clas-
sified as ‘‘Full Ancestry X.’’ We provided results for variations of
Nc in Table 6. For Nc < CPAF and Nc < CPEU, only extremely min-
imal shifts in the ancestry assessment distributions toward ‘‘Full
European’’ or ‘‘Full African’’ occurred. The lack of shifting indi-
cates that for our NCNA and GUA samples, the CP is an insignifi-
cant bias because rarely did an individual express all traits or trait
states associated with a particular ancestry. Regardless of the CP’s
bias in our data sets, this is clearly a factor that has the potential to
bias an ancestry estimation when employing the trait list method.
Forensic anthropologists should be cognizant of the CPs they create
when selecting the nonmetric traits to use in a trait list method
ancestry analysis.

Conclusions

We developed a simulation to demonstrate how variations in the
application of the trait list method influence ancestry estimations.
Using two temporally and geographically diverse samples, we found
that the trait list method provides ancestry estimation stability as
thresholds, trait quantity, and specific traits are varied. For all data
sets and Runs, AccuracyAS was maintained above 90%. The simula-
tion, its generated results, and the variable AccuracyAS simply pro-
vide estimations of how ancestry estimation outcomes can differ
when the trait list method is varied. True accuracy is a dynamic
process, dependent on how the actual words used to describe the
ancestry on a case report are interpreted by the law enforcement
officials to successfully find a match in a missing person’s database.
However, in this paper, AccuracyAS does serve to illuminate how
well the trait list method results in a consistent ancestry estimation
regardless of the variations placed on the method via the simulation.
Such high levels of AccuracyAS are counterintuitive when studying
the diversity present in the raw frequencies of trait states for both
the GUA and NCNA samples. For many of the morphoscopic traits,
raw frequencies were roughly proportionate in each of the three
ancestries. By using at least 10 traits and an 88 ⁄12 threshold, this
raw diversity is minimized to result in similar ancestry estimations.

The simulations of accuracy and stability of ancestry estimations
using the trait list method are only appropriate within the context
of the two samples presented here. While we did choose samples
that exhibited trait state diversity, verifying the results with addi-
tional samples can serve to verify the conclusions presented here.
To generate a broader exploration on the effects of the lack of stan-
dardization of the trait list method, more samples need to be
included. While we feel it is responsible to draw conclusions for
only these two samples, we can make generalized recommenda-
tions based on our results. We recommend that Nc be less than or
equal to the smallest CP for a given set of nonmetric traits being
applied to a case analysis. In addition, keep in mind that if the low-
est CP is small, then it may be best to increase Ntrait. If it is impos-
sible to increase Ntrait because of missing portions of the cranium,
we recommend that the forensic anthropologist be highly conserva-
tive with ancestry estimations solely based on a trait list method
ancestry estimation, as the effects of the CP bias have not been
generically tested yet. We also recommend that the forensic com-
munity move toward standardizing the minimum number of traits
appropriate for conducting a trait list method analysis, as our results
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exhibit the greatest variation when Nc is changed. For the samples
presented in this paper, using at least 10 traits in the trait list
method analysis (Nc ‡ 10) generates a limited number of ancestry
estimations that minimize or exclude Asian ancestry. Additional
samples must be tested in our simulation to confirm that this Nc is
appropriate in the broad application of the trait list method.

In regard to trait selection, we have demonstrated that even when
particular traits are excluded, the AccuracyAS remains high. For a
generalized approach, the simulation employed here takes into
account all possible combinations of traits, thereby excluding and
including different traits at different times. Therefore, each of the
trends presented here considers variations in the selection of traits
used in a trait list method ancestry estimation. At this point, we
make no recommendations for the necessary inclusion or exclusion
of particular traits when applying the trait list method, as it is clear
that even traits seen in the highest frequencies of our data sets
(such as shovel-shaped incisors) only minimally alter the ancestry
estimations when excluded.

Last, it is important to contextualize this paper within the reali-
ties of forensic anthropological casework. In order for the authors
to explore their specific research questions, we made assumptions
about the conventional employment of the trait list method, as well
as the acceptance of associating specific trait states to specific
ancestries. While the trait list method’s discreteness clearly lends
itself to cookie-cutter ancestry classifications, we also recognize
that most likely the large majority of practicing anthropologists (i)
understand the nuances of trait distributions throughout global pop-
ulations, (ii) are aware of empirical critiques of the association of
trait states to specific ancestries, and (iii) apply such insight when
analyzing the presence or absence of nonmetric cranial traits.
Because the trait list method is not grounded in statistical analyses,
it is imperative to continue to explore how this analytical tool actu-
ally functions. Nuances, biases, and caveats can be embedded in
every method of analysis and must be rigorously refined and vali-
dated to ensure that such methods can stand up to the requirements
of empirical analysis. Here, we have elucidated several dark corners
of the trait list method, but more analyses of this widely applied
method are necessary. Aspects such as trait weighting, subjectivity
of classifying trait states, sample variation, and the weighting of
multiple ancestry estimation methods must also be explored to
understand how the trait list method ‘‘works.’’ As long as the trait
list method and its variations continue to be applied to casework,
forensic anthropologists bear the responsibility to know how the
method’s nuances ultimately influence ancestry estimation.
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Appendix: Traits, Trait States, Associated Ancestries and

References

The traits used in this research are binary and morphoscopic in
nature. When a trait state could not be confidently declared by the
authors, an ‘‘unknown’’ was given for the trait state and was treated
the same as a missing trait state in the analysis. The authors con-
formed to the descriptions of the states given in the references
when descriptions were given. The association ‘‘n ⁄ a’’ indicates that
no ancestry is weighted for that state.

Trait Reference Trait States
Ancestry
Association

Metopic suture 10 Present European
Obliterated n ⁄ a
Trace Asian

Infraorbital suture 37 Present Asian
Absent n ⁄ a
Trace Asian

Inca bone 10 Present Asian
Absent n ⁄ a
Trace Asian

Postbregmatic depression 10 Present African
Absent n ⁄ a

Appendix: Continued.

Trait Reference Trait States
Ancestry
Association

Inion hook 10 Present European
Absent n ⁄ a

Nasal overgrowth 10 Present Asian
Absent n ⁄ a

Marginal process 10 Present Asian
Absent n ⁄ a

Canine fossa 10 Present European
Absent n ⁄ a

Buccal pits 10 Present Asian
Absent n ⁄ a

Enamel extensions 10 Present Asian
Absent n ⁄ a

Carabelli’s cusp 10 Present European
Absent n ⁄ a

Zygomatic hook 10 Present Asian
Absent n ⁄ a

Zygomaticamaxillary
suture

10 Curved African or
European

Angled Asian
Incisal rotation 10 Present Asian

Absent n ⁄ a
Peg tooth 10 Present Asian

Absent n ⁄ a
Sutural ossicles 10 Present Asian

Absent n ⁄ a
Keeling 10 Present European

Absent n ⁄ a
Shovel shaped incisors 10 Present Asian

Absent n ⁄ a
Prognathism 10 Large African

Medium Asian
None European

Dental arcade shape 10 Elliptic Asian
Hyperbolic African
Parabolic European

Palatine suture 10 Straight Asian
Bulging African
Jagged European

Nasal spine 10 Large European
Intermediate Asian
Small African

Nasal sill 10 Deep European
Shallow Asian
Blurred African

Orbital shape 10 Rounded Asian
Rectangular African
Sloping European

Nasal form 10 High and angled European
Wide and slightly
concave

Asian

Low and rounded African
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